Introdução ao Jornalismo Científico/Temas Centrais da Ciência Contemporânea/Modelagem de neurônios
Modelagem de neurônios
A tradução matemática
[editar | editar código-fonte]Criar um modelo é traduzir/descrever uma pergunta em termos matemáticos. Para isso, é preciso identificar características relevantes no objeto analisado que possam responder questões como:
- Por que esse tipo de tradução é importante?
- O que pode ser usado para traduzir esse evento/fenômeno/comportamento?
O modelo matemático, nesse sentido, é uma representação ou interpretação simplificada da realidade, ou uma interpretação de um fragmento de um sistema, segundo uma estrutura de conceitos mentais ou experimentais. Um modelo é por definição realista, no sentido de manter apenas os elementos centrais dos fenômenos tais quais existem, e não naturalista, uma reprodução fidedigna dos objetos analisados.
Estocasticidade
[editar | editar código-fonte]Na Teoria das Probabilidades, o padrão estocástico é aquele cujo estado é indeterminado, com origem em eventos aleatórios.[1] Por exemplo, o lançar de dados resulta num processo estocástico, pois qualquer uma das 6 faces do dado tem iguais probabilidades de ficar para cima após o arremesso. Assim, qualquer sistema ou processo analisado usando a teoria probabilística é estocástico, ao menos em parte. Porém, é importante salientar uma diferença entre aleatoriedade estatística e estocasticidade. Normalmente, os eventos estocásticos são estatisticamente aleatórios. Todavia, podem eventualmente não o ser. É perfeitamente plausível, embora improvável, que uma série de 10 arremessos de dados gere a sequência não aleatória de 6,5,4,3,2,1,2,3,4,5 ou 1,1,1,1,1,1,1,1,1,1. Apesar de coerente — ou compressível (podendo ser expressa de um modo mais comprimido que a sequência inteira) — a sequência estatisticamente não-aleatória é estocástica, pois surgiu através de um evento aleatório: o lançar de dados.
Comportamentos estocásticos
[editar | editar código-fonte]História
[editar | editar código-fonte]Estudos rigorosos sobre processos estocásticos começaram no final do século XIX para ajudar a entender o mercado financeiro e o movimento Browniano.[2] A primeira pessoa a descrever a matemática por trás do movimento Browniano foi Thorvald N. Thiele em um artigo sobre o método dos mínimos quadrados publicado em 1880. De modo independente, Louis Bachelier publicou em 1900 sua tese de doutorado “A teoria da especulação”, em que ele apresenta uma análise estocástica dos mercados de ações e de opções. Albert Einstein, em um artigo de 1905, e Marian Smoluchowski, em 1906, trouxeram a solução do problema para a atenção dos físicos, apresentando-a como um modo indireto de confirmar a existência de átomos e moléculas. Suas equações descrevendo um movimento Browniano foram subsequentemente verificadas pelo trabalho experimental de Jean Baptiste Perrin em 1908.
Um trecho do artigo de Einstein descreve os fundamentos de um modelo estocástico:"Claramente deve se assumir que cada partícula individual executa um movimento que é independente dos movimentos de todas as outras partículas, também deve se considerar que o movimento de uma mesma partícula em intervalos de tempo diferentes são processos independentes, contanto que esses intervalos de tempo escolhidos não sejam muito pequenos. Introduzimos um intervalo de tempo em consideração, que é muito pequeno comparado com os intervalos de tempo observáveis, mas ainda assim grande o suficiente para que em dois intervalos de tempos sucessivos, os movimentos executados pela partícula podem ser pensados como eventos que são independentes entre si.”
Definição
[editar | editar código-fonte]Dentro da teoria das probabilidades, um processo estocástico é uma família de variáveis aleatórias representando a evolução de um sistema de valores com o tempo. É a contraparte probabilística de um processo determinístico. Ao invés de um processo que possui um único modo de evoluir, como nas soluções de equações diferenciais ordinárias, por exemplo, em um processo estocástico há uma indeterminação: mesmo que se conheça a condição inicial, existem várias, por vezes infinitas, direções nas quais o processo pode evoluir.
Em casos de tempo discreto, em oposição ao tempo contínuo, o processo estocástico é uma sequência de variáveis aleatórias, como por exemplo uma cadeia de Markov.
Modelo Galves-Löcherbach
[editar | editar código-fonte]Algumas inspirações do modelo são o sistema de partículas em interação de Frank Spitzer e a noção de cadeias estocásticas com memória de alcance variável de Jorma Rissanen. Outro trabalho que o influenciou inclui o estudo de Bruno Cessac[5] com o modelo integra-e-dispara com vazamento, que por sua vez teve influência de Hédi Soula. Os próprios autores chamaram o processo apresentado por Cessac de "uma versão em dimensão finita" do modelo probabilístico.
Modelos anteriores de integra-e-dispara com características estocásticas necessitavam a inserção de um ruído para simular a estocasticidade[6]. Esse modelo se destaca por ser inerentemente estocástico, incorporando questões probabilísticas diretamente no cálculo dos disparos. Ele também é um modelo de implementação relativamente simples, do ponto de vista computacional, com uma boa relação entre custo e eficiência. É também um modelo não-markoviano, pois a probabilidade da ocorrência de um disparo de um neurônio dado depende da atividade acumulada do sistema desde o último disparo.
Desenvolvimentos do modelo foram realizados, contemplando a noção de limites hidrodinâmicos do sistema de neurônios em interação[7], o comportamento de longo prazo e aspectos referentes à estabilidade do processo no sentido de prever e classificar diferentes comportamentos como uma função dos parâmetros[8][9], e a generalização do modelo para tempo contínuo[10].
Crédito: O conteúdo desta aula foi baseado em uma entrevista feita com Aline Duarte, pesquisadora associada do NeuroMat
Referências
[editar | editar código-fonte]- ↑ ESTOCÁSTICO. In: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2020. Disponível em: <https://pt.wikipedia.org/w/index.php?title=Estoc%C3%A1stico&oldid=58719724>. Acesso em: 9 jul. 2020.
- ↑ PROCESSO ESTOCÁSTICO. In: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2020. Disponível em: <https://pt.wikipedia.org/w/index.php?title=Processo_estoc%C3%A1stico&oldid=59628212>. Acesso em: 20 out. 2020.
- ↑ MODELO GALVES-LÖCHERBACH. In: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2016. Disponível em: <https://pt.wikipedia.org/w/index.php?title=Modelo_Galves-L%C3%B6cherbach&oldid=47364332>. Acesso em: 1 dez. 2016.
- ↑ Galves, A.; Löcherbach, E. (2013). "Infinite Systems of Interacting Chains with Memory of Variable Length—A Stochastic Model for Biological Neural Nets". Journal of Statistical Physics. 151 (5): 896–921. arXiv:1212.5505. doi:10.1007/s10955-013-0733-9.
- ↑ B. Cessac, "A discrete time neural network model with spiking neurons: II: Dynamics with noise". Journal of Mathematical Biology, Vol. 62, nº 6, pg 863-900. Junho 2011
- ↑ H. E. Plesser, W. Gerstner. "Noise in Integrate-and-Fire Neurons: From Stochastic Input to Escape Rates". Neural Computation. Feb 2000, Vol. 12, No. 2, Pg 367-384
- ↑ A. De Masi, A. Galves, E. Löcherbach, E. Presutti, "Hydrodynamic limit for interacting neurons". Journal of Statistical Physics, 158(4), 866-902, 2015.
- ↑ A. Duarte, G. Ost, "A model for neural activity in the absence of external stimuli", arXiv preprint arXiv:1410.6086 (2014).
- ↑ N. Fournier, E. Löcherbach, "On a toy model of interacting neurons", arXiv preprint arXiv:1410.3263 (2014).
- ↑ K. Yaginuma, "A stochastic system with infinite interacting components to model the time evolution of the membrane potentials of a population of neurons", arXiv preprint arXiv:1505.00045 (2015).