Saltar para o conteúdo

Linguagens regulares

Fonte: Wikiversidade

Na teoria da ciência da computação e teoria formal de linguagem, uma linguagem regular é uma linguagem formal que pode ser expressa usando expressões regulares, ou seja, uma linguagem produzida utilizando as operações de concatenação, união e fecho de Kleene sobre os elementos de um alfabeto. De acordo com a hierarquia de Chomsky, linguagens regulares são aquelas geradas por gramática regulares.

As linguagens regulares são utilizadas para descrever dispositivos que realizam computações simples, como os autômatos finitos, pois representam a linguagem mais elementar classificada pela hierarquia de Chomsky que não requer memória para ser reconhecida.

No projeto de linguagens de programação, as linguagens regulares são úteis no processo de análise sintática.

Definição formal

[editar | editar código-fonte]

A coleção de linguagens regulares sobre um alfabeto Σ qualquer é definida recursivamente seguindo as regras abaixo:

  • A linguagem vazia (L = Ø) é uma linguagem regular.
  • Se x é um elemento qualquer do alfabeto Σ, a linguagem formado pelo conjunto desse elemento (L = {x}) é uma linguagem regular.
  • Se A e B são linguagens regulares, então as linguagens formadas pela união (L = AB), concatenação (L = AB) e fecho de Kleene (L = A* ou L = B*) desses conjuntos também são linguagens regulares.
  • Nenhuma outra linguagem sobre o alfabeto Σ é regular.

Veja Expressão regular para ver a semântica e a sintaxe dessas operações. Note que os casos acima são consequências das regras da definição das expressões regulares.

[editar | editar código-fonte]

Todas as linguagens finitas são regulares, em particular a linguagem composta unicamente pela cadeia vazia (L = {ε} = Ø*) é regular. Considerando o alfabeto Σ = {a, b}, é possível descrever linguagens regulares como "todas cadeias que contenham um número par de 'a'" ou "todas cadeias formadas por uma quantidade qualquer de 'a' seguido de uma quantidade qualquer de 'b'" e assim por diante.

O que não pode ser considerado uma linguagem regular são as linguagens que requerem a atuação de uma memória para estruturar os elementos de suas cadeias, isto é, quando a frequência de um elemento da cadeia determina a frequência de outro elemento da mesma cadeia. Portanto, linguagens como "todas cadeias de 'a' seguido de 'b', onde o número de 'a' é igual ao de 'b'", não são regulares pois o número de 'a' determina o número de 'b'.

Existem inúmeras técnicas para determinar se uma linguagem é regular ou não, sendo comum a utilização do lema do bombeamento para linguagens regulares.

Equivalência com outros formalismos

[editar | editar código-fonte]

Uma linguagem regular satisfaz as seguintes propriedades que são equivalentes:

  1. ela é a linguagem descrita por uma expressão regular.
  2. ela pode ser aceita por um autômato finito determinístico.
  3. ela pode ser aceita por um autômato finito não determinístico.
  4. ela pode ser aceita por um autômato finito alternado.
  5. ela pode ser gerada por uma gramática regular.
  6. ela pode ser gerada por uma gramática de prefixos.
  7. ela pode ser aceita por uma Máquina de Turing que apenas faz leituras.
  8. ela pode ser definida em um monádico da lógica de segunda ordem.
  9. ela é reconhecida por algum Monoide finito.

Alguns autores utilizam a equivalência de linguagens regulares com outros formalismos como definição alternativa para as mesmas.

Resultados sobre a Complexidade

[editar | editar código-fonte]

Na teoria da complexidade computacional, a classe de complexidade de todas linguagens regulares são ocasionalmente chamadas como REGULAR ou REG e equivale a DSPACE(O(1)), o problema de decisão pode ser resolvido em um espaço constante (o espaço usado é independente do tamanho da entrada). REGULARAC0, uma vez que REG (trivialmente) contém o problema da paridade de determinar se o número de bits 1 na entrada é par ou ímpar e este problema não está naAC0. Em contrapartida, REGULAR não contém AC0, porque as linguagens não regular dos palíndromos, ou a linguagen não regular , ambas, podem ser reconhecidas em AC0.

Se uma linguagem é não regular, ela requer uma máquina que no mínimo Ω(log log n) de espaço para reconhecê-la (onde n é o tamanho da entrada). Em outras palavras, DSPACE(O(log log n)) é equivalente a classe das linguagens regulares. Na prática, grande parte das linguagens não regulares são resolvidas por máquinas que tenha no mínimo espaço logarítmico.