Um sistema mecânico massa-mola-amortecedor é mostrado na figura Figura 1.0 . A massa se movimenta segundo a equação (1) e seu movimento é denotado por y(t) .
Figura 1.0. Sistema Massa Mola com Amortecedor .
M
y
¨
(
t
)
+
b
y
˙
(
t
)
+
k
y
(
t
)
=
r
(
t
)
{\displaystyle \mathbf {M{\ddot {y}}(t)+b{\dot {y}}(t)+ky(t)=r(t)} }
(1)
Resolvendo essa a equação (1) :
(I):
L
{
M
y
¨
(
t
)
+
b
y
˙
(
t
)
+
k
y
(
t
)
}
=
L
{
r
(
t
)
}
{\displaystyle {\mathcal {L}}\{M{\ddot {y}}(t)+b{\dot {y}}(t)+ky(t)\}={\mathcal {L}}\{r(t)\}}
M
(
s
2
Y
(
s
)
−
s
y
(
0
−
)
−
y
˙
(
0
−
)
)
+
b
(
s
Y
(
s
)
−
y
(
0
−
)
)
+
k
Y
(
s
)
=
R
(
s
)
{\displaystyle M(s^{2}Y(s)-sy(0^{-})-{\dot {y}}(0^{-}))+b(sY(s)-y(0^{-}))+kY(s)=R(s)}
Quando:
r
(
t
)
=
0
{\displaystyle r(t)=0}
e
y
(
0
−
)
=
y
0
{\displaystyle y(0^{-})=y_{0}}
e
y
˙
(
0
−
)
=
0
)
⇒
{\displaystyle {\dot {y}}(0^{-})=0)\Rightarrow }
M
(
s
2
Y
(
s
)
−
s
y
0
)
+
b
(
s
Y
(
s
)
−
y
0
)
+
k
Y
(
s
)
=
0
{\displaystyle M(s^{2}Y(s)-sy_{0})+b(sY(s)-y_{0})+kY(s)=0}
M
s
2
Y
(
s
)
−
M
s
y
0
+
b
s
Y
(
s
)
−
b
y
0
+
k
Y
(
s
)
=
0
{\displaystyle Ms^{2}Y(s)-Msy_{0}+bsY(s)-by_{0}+kY(s)=0}
Y
(
s
)
=
y
0
(
M
s
+
b
)
(
M
s
2
+
b
s
+
k
)
=
p
(
s
)
q
(
s
)
{\displaystyle \mathbf {Y(s)={\frac {y_{0}(Ms+b)}{(Ms^{2}+bs+k)}}={\frac {p(s)}{q(s)}}} }
(2)
Onde q(s) quando igualada a zero é conhecida como Equação Característica . As raíses dessa equação são chamadas de polos e as raízes de p(s) são chamadas de zeros, nesse caso o existe um zero:
s
=
−
b
M
{\displaystyle s={\frac {-b}{M}}}
.
(II):
Fazendo um caso particular:
k
M
=
2
{\displaystyle {\frac {k}{M}}=2}
e
b
M
=
3
{\displaystyle {\frac {b}{M}}=3}
⇒
{\displaystyle \Rightarrow }
Y
(
s
)
=
y
0
(
M
s
+
3
M
)
(
M
s
2
+
3
M
s
+
2
M
)
=
y
0
(
s
+
3
)
(
s
2
+
3
s
+
2
)
=
y
0
(
s
+
3
)
(
s
+
2
)
(
s
+
1
)
{\displaystyle Y(s)={\frac {y_{0}(Ms+3M)}{(Ms^{2}+3Ms+2M)}}={\frac {y_{0}(s+3)}{(s^{2}+3s+2)}}={\frac {y_{0}(s+3)}{(s+2)(s+1)}}}
Expandindo em Frações Parciais :
Y
(
s
)
=
k
1
(
s
+
1
)
+
k
2
(
s
+
2
)
{\displaystyle Y(s)={\frac {k_{1}}{(s+1)}}+{\frac {k_{2}}{(s+2)}}}
Onde
k
1
{\displaystyle \mathbf {k_{1}} }
e
k
2
{\displaystyle \mathbf {k_{2}} }
são conhecidos como resíduos . Fazendo
y
0
=
1
{\displaystyle y_{0}=1}
e multiplicando os dois lados da equação
(
s
+
1
)
(
s
+
2
)
{\displaystyle (s+1)(s+2)}
:
Y
(
s
)
(
s
+
1
)
(
s
+
2
)
=
k
1
(
s
+
2
)
+
k
2
(
s
+
1
)
⇒
(
s
+
3
)
=
k
1
(
s
+
2
)
+
k
2
(
s
+
1
)
{\displaystyle Y(s)(s+1)(s+2)=k_{1}(s+2)+k_{2}(s+1)\Rightarrow (s+3)=k_{1}(s+2)+k_{2}(s+1)}
s
=
−
1
:
k
1
=
−
1
+
3
−
1
+
2
=
2
1
=
2
{\displaystyle s=-1:k_{1}={\frac {-1+3}{-1+2}}={\frac {2}{1}}=2}
. Ou seja,
(
s
+
1
)
(
s
+
3
)
(
s
+
1
)
(
s
+
2
)
|
s
1
=
−
1
=
2
{\displaystyle {\frac {(s+1)(s+3)}{(s+1)(s+2)}}{\Bigg |}_{s_{1}=-1}=2}
s
=
−
2
:
k
2
=
−
2
+
3
−
2
+
1
=
1
−
1
=
−
1
{\displaystyle s=-2:k_{2}={\frac {-2+3}{-2+1}}={\frac {1}{-1}}=-1}
. Ou seja,
(
s
+
2
)
(
s
+
3
)
(
s
+
2
)
(
s
+
1
)
|
s
1
=
−
2
=
−
1
{\displaystyle {\frac {(s+2)(s+3)}{(s+2)(s+1)}}{\Bigg |}_{s_{1}=-2}=-1}
Isso nos leva a:
Y
(
s
)
=
2
(
s
+
1
)
+
−
1
(
s
+
2
)
⇒
{\displaystyle Y(s)={\frac {2}{(s+1)}}+{\frac {-1}{(s+2)}}\Rightarrow }
L
−
1
{
Y
(
s
)
}
=
L
−
1
{
2
(
s
+
1
)
+
−
1
(
s
+
2
)
}
⇒
{\displaystyle {\mathcal {L}}^{-1}\{Y(s)\}={\mathcal {L}}^{-1}{\Bigg \{}{\frac {2}{(s+1)}}+{\frac {-1}{(s+2)}}{\Bigg \}}\Rightarrow }
L
−
1
{
Y
(
s
)
}
=
L
−
1
{
2
(
s
+
1
)
}
+
L
−
1
{
−
1
(
s
+
2
)
}
⇒
{\displaystyle {\mathcal {L}}^{-1}\{Y(s)\}={\mathcal {L}}^{-1}{\Bigg \{}{\frac {2}{(s+1)}}{\Bigg \}}+{\mathcal {L}}^{-1}{\Bigg \{}{\frac {-1}{(s+2)}}{\Bigg \}}\Rightarrow }
y
(
t
)
=
2
e
−
t
+
−
e
−
2
t
{\displaystyle y(t)=2e^{-t}+-e^{-2t}}
A Equação (2) pode ser escrita da seguinte forma:
Y
(
s
)
=
y
0
(
M
s
+
b
)
(
M
s
2
+
b
s
+
k
)
=
(
s
+
2
ζ
ω
n
)
y
0
s
2
+
2
ζ
ω
n
s
+
ω
n
2
{\displaystyle \mathbf {Y(s)={\frac {y_{0}(Ms+b)}{(Ms^{2}+bs+k)}}={\frac {(s+2\zeta \omega _{n})y_{0}}{s^{2}+2\zeta \omega _{n}s+\omega _{n}^{2}}}} }
(3)
Onde
ζ
{\displaystyle \mathbf {\zeta } }
é conhecido como Coeficiente de Amortecimento e
ω
n
{\displaystyle \mathbf {\omega _{n}} }
a Frequência Natural . Isso nos leva as raízes da equação característica:
Δ
=
(
2
ζ
ω
n
)
2
−
4
ω
n
2
{\displaystyle \Delta =(2\zeta \omega _{n})^{2}-4\omega _{n}^{2}}
⇒
{\displaystyle \Rightarrow }
Δ
=
4
ω
n
2
ζ
2
−
4
ω
n
2
{\displaystyle \Delta =4\omega _{n}^{2}\zeta ^{2}-4\omega _{n}^{2}}
⇒
{\displaystyle \Rightarrow }
Δ
=
4
ω
n
2
(
ζ
2
−
1
)
{\displaystyle \Delta =4\omega _{n}^{2}(\zeta ^{2}-1)}
⇒
{\displaystyle \Rightarrow }
Δ
=
4
ω
n
2
(
ζ
2
−
1
)
=
2
ω
n
ζ
2
−
1
⇒
{\displaystyle {\sqrt {\Delta }}={\sqrt {4\omega _{n}^{2}(\zeta ^{2}-1)}}=2\omega _{n}{\sqrt {\zeta ^{2}-1}}\Rightarrow }
s
1
,
s
2
=
−
2
ζ
ω
n
±
2
ω
n
ζ
2
−
1
2
⇒
{\displaystyle s_{1},s_{2}={\frac {-2\zeta \omega _{n}\pm 2\omega _{n}{\sqrt {\zeta ^{2}-1}}}{2}}\Rightarrow }
s
1
,
s
2
=
−
ζ
ω
n
±
ω
n
ζ
2
−
1
{\displaystyle \mathbf {s_{1},s_{2}=-\zeta \omega _{n}\pm \omega _{n}{\sqrt {\zeta ^{2}-1}}} }
(4)
(III):
Sabendo que
ω
n
=
k
M
{\displaystyle \mathbf {\omega _{n}={\sqrt {\frac {k}{M}}}} }
e
ζ
=
k
M
{\displaystyle \mathbf {\zeta ={\sqrt {kM}}} }
, dado que:
Y
(
s
)
=
y
0
M
(
s
+
b
M
)
M
(
s
2
+
b
M
s
+
k
M
)
=
y
0
(
s
+
b
M
)
(
s
2
+
b
M
s
+
k
M
)
⇒
{\displaystyle Y(s)={\dfrac {y_{0}M(s+{\dfrac {b}{M}})}{M(s^{2}+{\dfrac {b}{M}}s+{\dfrac {k}{M}})}}={\dfrac {y_{0}(s+{\dfrac {b}{M}})}{(s^{2}+{\dfrac {b}{M}}s+{\dfrac {k}{M}})}}\Rightarrow }
2
ζ
ω
n
=
b
M
{\displaystyle 2\zeta \omega _{n}={\frac {b}{M}}}
e
ω
n
2
=
k
M
⇒
{\displaystyle \omega _{n}^{2}={\frac {k}{M}}\Rightarrow }
ω
n
=
k
M
{\displaystyle \omega _{n}={\sqrt {\frac {k}{M}}}}
e
ζ
=
b
2
k
M
{\displaystyle \zeta ={\frac {b}{2{\sqrt {kM}}}}}
Quando
ζ
>
1
{\displaystyle \mathbf {\zeta >1} }
as raízes são reais e diferentes e o sistema é superamortecido , quando
ζ
<
1
{\displaystyle \mathbf {\zeta <1} }
as raízes são complexas e o sistema é subamortecido , quando
ζ
=
1
{\displaystyle \mathbf {\zeta =1} }
as raízes são reais e iguais e o sistema é criticamente amortecido .
(IV):
Quando
ζ
<
1
{\displaystyle \zeta <1}
⇒
{\displaystyle \Rightarrow }
ζ
2
−
1
=
(
−
1
)
(
1
−
ζ
2
)
{\displaystyle \zeta ^{2}-1=(-1)(1-\zeta ^{2})}
⇒
{\displaystyle \Rightarrow }
(
−
1
)
(
1
−
ζ
2
)
=
j
1
−
ζ
2
{\displaystyle {\sqrt {(-1)(1-\zeta ^{2})}}=j{\sqrt {1-\zeta ^{2}}}}
isso implica que:
s
1
,
s
2
=
−
ζ
ω
n
±
j
ω
n
1
−
ζ
2
{\displaystyle \mathbf {s_{1},s_{2}=-\zeta \omega _{n}\pm j\omega _{n}{\sqrt {1-\zeta ^{2}}}} }
(5)
Utilizando a Figura 2.0 para o entendimento: ( (*) sabendo que os valores para o calculo do ângulo \theta são absolutos)
{
1
)
|
s
1
|
=
|
s
2
|
=
ω
n
2
ζ
2
+
ω
n
2
(
1
−
ζ
2
)
=
ω
n
2
ζ
2
+
ω
n
2
−
ω
n
2
ζ
2
=
ω
n
2
=
ω
n
2
)
R
e
{
s
1
}
=
R
e
{
s
2
}
=
−
ω
n
ζ
3
)
I
m
{
s
1
}
=
−
I
m
{
s
2
}
=
ω
n
1
−
ζ
2
}
⇒
{\displaystyle {\begin{Bmatrix}1)|s_{1}|=|s_{2}|={\sqrt {\omega _{n}^{2}\zeta ^{2}+\omega _{n}^{2}(1-\zeta ^{2})}}={\sqrt {\omega _{n}^{2}\zeta ^{2}+\omega _{n}^{2}-\omega _{n}^{2}\zeta ^{2}}}={\sqrt {\omega _{n}^{2}}}=\omega _{n}\\2)Re\{s_{1}\}=Re\{s_{2}\}=-\omega _{n}\zeta \\3)Im\{s_{1}\}=-Im\{s_{2}\}=\omega _{n}{\sqrt {1-\zeta ^{2}}}\end{Bmatrix}}\Rightarrow }
{
1
)
θ
=
arctan
j
ω
n
1
−
ζ
2
ζ
ω
n
2
)
θ
=
arccos
ζ
ω
n
ω
n
3
)
θ
=
arcsin
j
ω
n
1
−
ζ
2
ω
n
}
⇒
{\displaystyle {\begin{Bmatrix}1)\theta =\arctan {\frac {j\omega _{n}{\sqrt {1-\zeta ^{2}}}}{\zeta \omega _{n}}}\\2)\theta =\arccos {\frac {\zeta \omega _{n}}{\omega _{n}}}\\3)\theta =\arcsin {\frac {j\omega _{n}{\sqrt {1-\zeta ^{2}}}}{\omega _{n}}}\end{Bmatrix}}\Rightarrow }
{
1
)
θ
=
arctan
j
1
−
ζ
2
ζ
2
)
θ
=
arccos
ζ
3
)
θ
=
arcsin
j
1
−
ζ
2
}
{\displaystyle {\begin{Bmatrix}1)\theta =\arctan {\frac {j{\sqrt {1-\zeta ^{2}}}}{\zeta }}\\2)\theta =\arccos \zeta \\3)\theta =\arcsin j{\sqrt {1-\zeta ^{2}}}\end{Bmatrix}}}
(6)
Figura 2.0. Plotagem dos Polos e dos Zeros de Y(s).
É interessante notar
θ
=
arccos
ζ
{\displaystyle \mathbf {\theta =\arccos \zeta } }
: quando
ζ
{\displaystyle \mathbf {\zeta } }
diminui o que diminui é o
cos
θ
{\displaystyle \mathbf {\cos \theta } }
, nesse caso o ângulo vai no sentido horário aumentando o seu valor e tornando o seu cosseno mais próximo de zero, ou seja, aproximando o seu valor de
π
2
{\displaystyle \mathbf {\frac {\pi }{2}} }
. Isso mostra que a partir que eu diminuo o meu coefieciente de amortecimento a parte real das minhas raízes tendem a diminuir, levando a um conteudo completamente imaginário, isso vai se mostrar mais adiante como um sistema completamente oscilatório, por outro lado a medida que o coeficiente de amortecimento aumenta o cosseno tende a aumentar isso leva a uma diminuição da parte imaginária das raízes (um sistema menos oscilatório) e a um
θ
{\displaystyle \mathbf {\theta } }
mais próximo de 0, ou seja, quando
θ
=
0
⇒
ζ
=
1
{\displaystyle \mathbf {\theta =0\Rightarrow \zeta =1} }
e quando
θ
=
1
⇒
ζ
=
π
2
{\displaystyle \mathbf {\theta =1\Rightarrow \zeta ={\frac {\pi }{2}}} }
como mostra a Figura 3.0 . Isso nos leva a conclusão de que como quando o
ζ
=
1
{\displaystyle \mathbf {\zeta =1} }
o sistema é criticamente amortecido e que quando
ζ
=
1
{\displaystyle \mathbf {\zeta =1} }
o
θ
=
0
{\displaystyle \mathbf {\theta =0} }
, então quando o
θ
=
0
{\displaystyle \mathbf {\theta =0} }
o sistema é criticamente amortecido , usando o mesmo raciocínio, como quando
ζ
=
0
{\displaystyle \mathbf {\zeta =0} }
o sistema é subamortecido e que quando
ζ
=
0
{\displaystyle \mathbf {\zeta =0} }
o
θ
=
π
2
{\displaystyle \mathbf {\theta ={\frac {\pi }{2}}} }
, então quando o
θ
=
π
2
{\displaystyle \mathbf {\theta ={\frac {\pi }{2}}} }
o sistema é subamortecido , e quando
0
<
θ
<=
π
2
{\displaystyle \mathbf {0<\theta <={\frac {\pi }{2}}} }
o sistema é subamortecido , só lembrando que quando
ζ
>
1
{\displaystyle \mathbf {\zeta >1} }
o sistema é superamortecido e se analisa
−
θ
{\displaystyle -\mathbf {\theta } }
.
Figura 3.0. Lugar das Raízes / Variação do Amortecimento / Frequência Constante .
(V):
Tentemos encontrar a solução da equação (2) no domínio do tempo:
Y
(
s
)
=
y
0
(
M
s
+
b
)
(
M
s
2
+
b
s
+
k
)
=
k
1
(
s
−
s
1
)
+
k
2
(
s
−
s
2
)
=
k
1
(
s
−
s
1
)
+
k
2
(
s
−
s
^
1
)
{\displaystyle Y(s)={\frac {y_{0}(Ms+b)}{(Ms^{2}+bs+k)}}={\frac {k_{1}}{(s-s_{1})}}+{\frac {k_{2}}{(s-s_{2})}}={\frac {k_{1}}{(s-s_{1})}}+{\frac {k_{2}}{(s-{\hat {s}}_{1})}}}
Onde
s
^
1
{\displaystyle \mathbf {{\hat {s}}_{1}} }
é o conjugado de
s
1
{\displaystyle \mathbf {s_{1}} }
e
k
1
{\displaystyle \mathbf {k_{1}} }
e
k
2
{\displaystyle \mathbf {k_{2}} }
são resíduos.Multiplicando os dois lados da euqação por
(
s
−
s
1
)
(
s
−
s
^
1
)
{\displaystyle (s-s_{1})(s-{\hat {s}}_{1})}
:
Y
(
s
)
(
s
−
s
1
)
(
s
−
s
^
1
)
=
k
1
(
s
−
s
^
1
)
+
k
2
(
s
−
s
1
)
{\displaystyle Y(s)(s-s_{1})(s-{\hat {s}}_{1})=k_{1}(s-{\hat {s}}_{1})+k_{2}(s-s_{1})}
(
s
+
2
ζ
ω
n
)
y
0
=
k
1
(
s
−
s
^
1
)
+
k
2
(
s
−
s
1
)
{\displaystyle (s+2\zeta \omega _{n})y_{0}=k_{1}(s-{\hat {s}}_{1})+k_{2}(s-s_{1})}
s
=
s
1
:
k
1
=
(
s
1
+
2
ζ
ω
n
)
y
0
(
s
1
−
s
^
1
)
{\displaystyle s=s_{1}:k_{1}={\frac {(s_{1}+2\zeta \omega _{n})y_{0}}{(s_{1}-{\hat {s}}_{1})}}}
s
=
s
2
:
k
2
=
(
s
^
1
+
2
ζ
ω
n
)
y
0
(
s
^
1
−
s
1
)
{\displaystyle s=s_{2}:k_{2}={\frac {({\hat {s}}_{1}+2\zeta \omega _{n})y_{0}}{({\hat {s}}_{1}-s_{1})}}}
Fazendo o uso da formula de Euler :
z
=
|
z
|
(
cos
θ
+
sin
θ
j
)
=
|
z
|
e
j
θ
{\displaystyle z=|z|(\cos \theta +\sin \theta j)=|z|e^{j\theta }}
{
1
)
k
1
=
N
1
D
1
2
)
k
2
=
N
2
D
2
}
⇒
{\displaystyle {\begin{Bmatrix}1)k_{1}={\frac {N_{1}}{D_{1}}}\\2)k_{2}={\frac {N_{2}}{D_{2}}}\end{Bmatrix}}\Rightarrow }
{
1
)
N
1
=
(
s
1
+
2
ζ
ω
n
)
y
0
=
(
−
ζ
ω
n
+
j
ω
n
1
−
ζ
2
+
2
ζ
ω
n
)
y
0
=
(
ζ
ω
n
+
j
ω
n
1
−
ζ
2
)
y
0
2
)
D
1
=
(
s
1
−
s
^
1
)
=
(
−
ζ
ω
n
+
j
ω
n
1
−
ζ
2
+
ζ
ω
n
+
ω
n
1
−
ζ
2
)
=
2
j
ω
n
1
−
ζ
2
3
)
N
2
=
(
s
^
1
+
2
ζ
ω
n
)
y
0
=
(
−
ζ
ω
n
−
j
ω
n
1
−
ζ
2
+
2
ζ
ω
n
)
y
0
=
(
ζ
ω
n
−
j
ω
n
1
−
ζ
2
)
y
0
4
)
D
2
=
(
s
^
1
−
s
1
)
=
(
−
ζ
ω
n
−
j
ω
n
1
−
ζ
2
+
ζ
ω
n
−
j
ω
n
1
−
ζ
2
)
=
−
2
j
ω
n
1
−
ζ
2
}
⇒
,
{\displaystyle {\begin{Bmatrix}1)N_{1}=(s_{1}+2\zeta \omega _{n})y_{0}=(-\zeta \omega _{n}+j\omega _{n}{\sqrt {1-\zeta ^{2}}}+2\zeta \omega _{n})y_{0}=(\zeta \omega _{n}+j\omega _{n}{\sqrt {1-\zeta ^{2}}})y_{0}\\2)D_{1}=(s_{1}-{\hat {s}}_{1})=(-\zeta \omega _{n}+j\omega _{n}{\sqrt {1-\zeta ^{2}}}+\zeta \omega _{n}+\omega _{n}{\sqrt {1-\zeta ^{2}}})=2j\omega _{n}{\sqrt {1-\zeta ^{2}}}\\3)N_{2}=({\hat {s}}_{1}+2\zeta \omega _{n})y_{0}=(-\zeta \omega _{n}-j\omega _{n}{\sqrt {1-\zeta ^{2}}}+2\zeta \omega _{n})y_{0}=(\zeta \omega _{n}-j\omega _{n}{\sqrt {1-\zeta ^{2}}})y_{0}\\4)D_{2}=({\hat {s}}_{1}-s_{1})=(-\zeta \omega _{n}-j\omega _{n}{\sqrt {1-\zeta ^{2}}}+\zeta \omega _{n}-j\omega _{n}{\sqrt {1-\zeta ^{2}}})=-2j\omega _{n}{\sqrt {1-\zeta ^{2}}}\\\end{Bmatrix}}\Rightarrow ,}
(Lembrando de
(
6
)
{\displaystyle \mathbf {(6)} }
e
|
s
1
|
=
|
s
^
1
|
=
ω
n
{\displaystyle |s_{1}|=|{\hat {s}}_{1}|=\omega _{n}}
)
{
1
)
N
1
=
M
1
e
j
θ
y
0
2
)
D
1
=
M
2
e
π
2
3
)
N
2
=
M
1
e
−
j
θ
y
0
4
)
D
2
=
M
2
e
−
π
2
}
⇒
{\displaystyle {\begin{Bmatrix}1)N_{1}=M_{1}e^{j\theta }y_{0}\\2)D_{1}=M_{2}e^{\frac {\pi }{2}}\\3)N_{2}=M_{1}e^{-j\theta }y_{0}\\4)D_{2}=M_{2}e^{\frac {-\pi }{2}}\\\end{Bmatrix}}\Rightarrow }
{
1
)
k
1
=
M
1
e
j
θ
y
0
M
2
e
π
2
2
)
k
2
=
M
1
e
−
j
θ
y
0
M
2
e
−
π
2
}
⇒
{\displaystyle {\begin{Bmatrix}1)k_{1}={\frac {M_{1}e^{j\theta }y_{0}}{M_{2}e^{\frac {\pi }{2}}}}\\2)k_{2}={\frac {M_{1}e^{-j\theta }y_{0}}{M_{2}e^{\frac {-\pi }{2}}}}\\\end{Bmatrix}}\Rightarrow }
{
1
)
k
1
=
ω
n
e
j
θ
y
0
2
ω
n
1
−
ζ
2
e
π
2
2
)
k
2
=
ω
n
e
−
j
θ
y
0
2
ω
n
1
−
ζ
2
e
−
π
2
}
⇒
{\displaystyle {\begin{Bmatrix}1)k_{1}={\frac {\omega _{n}e^{j\theta }y_{0}}{2\omega _{n}{\sqrt {1-\zeta ^{2}}}e^{\frac {\pi }{2}}}}\\2)k_{2}={\frac {\omega _{n}e^{-j\theta }y_{0}}{2\omega _{n}{\sqrt {1-\zeta ^{2}}}e^{\frac {-\pi }{2}}}}\\\end{Bmatrix}}\Rightarrow }
{
1
)
k
1
=
e
(
j
θ
−
π
2
)
y
0
2
1
−
ζ
2
2
)
k
2
=
e
(
π
2
−
j
θ
)
y
0
2
1
−
ζ
2
}
⇒
{\displaystyle {\begin{Bmatrix}1)k_{1}={\frac {e^{(j\theta -{\frac {\pi }{2}})}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}\\2)k_{2}={\frac {e^{({\frac {\pi }{2}}-j\theta )}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}\\\end{Bmatrix}}\Rightarrow }
Y
(
s
)
=
e
j
(
θ
−
π
2
)
y
0
2
1
−
ζ
2
(
s
−
s
1
)
+
e
j
(
π
2
−
θ
)
y
0
2
1
−
ζ
2
(
s
−
s
^
1
)
=
e
j
(
θ
−
π
2
)
y
0
2
1
−
ζ
2
(
s
+
ζ
ω
n
−
j
ω
n
1
−
ζ
2
)
+
e
j
(
π
2
−
θ
)
y
0
2
1
−
ζ
2
(
s
+
ζ
ω
n
+
j
ω
n
1
−
ζ
2
)
⇒
L
−
1
{
Y
(
s
)
}
=
L
−
1
{
e
j
(
θ
−
π
2
)
y
0
2
1
−
ζ
2
(
s
+
ζ
ω
n
−
j
ω
n
1
−
ζ
2
)
+
e
j
(
π
2
−
θ
)
y
0
2
1
−
ζ
2
(
s
+
ζ
ω
n
+
j
ω
n
1
−
ζ
2
)
}
⇒
y
(
t
)
=
L
−
1
{
e
j
(
θ
−
π
2
)
y
0
2
1
−
ζ
2
(
s
+
ζ
ω
n
−
j
ω
n
1
−
ζ
2
)
}
+
L
−
1
{
e
j
(
π
2
−
θ
)
y
0
2
1
−
ζ
2
(
s
+
ζ
ω
n
+
j
ω
n
1
−
ζ
2
)
}
=
{\displaystyle Y(s)={\dfrac {\dfrac {e^{j(\theta -{\dfrac {\pi }{2}})}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}{(s-s_{1})}}+{\dfrac {\dfrac {e^{j({\dfrac {\pi }{2}}-\theta )}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}{(s-{\hat {s}}_{1})}}={\dfrac {\dfrac {e^{j(\theta -{\dfrac {\pi }{2}})}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}{(s+\zeta \omega _{n}-j\omega _{n}{\sqrt {1-\zeta ^{2}}})}}+{\dfrac {\dfrac {e^{j({\dfrac {\pi }{2}}-\theta )}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}{(s+\zeta \omega _{n}+j\omega _{n}{\sqrt {1-\zeta ^{2}}})}}\Rightarrow {\mathcal {L}}^{-1}\{Y(s)\}={\mathcal {L}}^{-1}{\Biggl \{}{\dfrac {\dfrac {e^{j(\theta -{\dfrac {\pi }{2}})}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}{(s+\zeta \omega _{n}-j\omega _{n}{\sqrt {1-\zeta ^{2}}})}}+{\dfrac {\dfrac {e^{j({\dfrac {\pi }{2}}-\theta )}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}{(s+\zeta \omega _{n}+j\omega _{n}{\sqrt {1-\zeta ^{2}}})}}{\Biggl \}}\Rightarrow y(t)={\mathcal {L}}^{-1}{\Biggl \{}{\dfrac {\dfrac {e^{j(\theta -{\dfrac {\pi }{2}})}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}{(s+\zeta \omega _{n}-j\omega _{n}{\sqrt {1-\zeta ^{2}}})}}{\Biggl \}}+{\mathcal {L}}^{-1}{\Biggl \{}{\dfrac {\dfrac {e^{j({\dfrac {\pi }{2}}-\theta )}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}{(s+\zeta \omega _{n}+j\omega _{n}{\sqrt {1-\zeta ^{2}}})}}{\Biggl \}}=}
y
(
t
)
=
e
j
(
θ
−
π
2
)
e
(
−
ζ
ω
n
+
j
ω
n
1
−
ζ
2
)
t
y
0
2
1
−
ζ
2
+
e
j
(
π
2
−
θ
)
e
(
−
ζ
ω
n
−
j
ω
n
1
−
ζ
2
)
t
y
0
2
1
−
ζ
2
=
(
e
(
j
θ
−
j
π
2
−
ζ
ω
n
t
+
j
ω
n
t
1
−
ζ
2
)
+
e
(
j
π
2
−
j
θ
−
ζ
ω
n
t
−
j
ω
n
t
1
−
ζ
2
)
)
y
0
2
1
−
ζ
2
=
e
−
ζ
ω
n
t
y
0
(
e
(
j
θ
−
j
π
2
+
j
ω
n
t
1
−
ζ
2
)
+
e
(
j
π
2
−
j
θ
−
j
ω
n
t
1
−
ζ
2
)
)
2
1
−
ζ
2
=
e
−
ζ
ω
n
t
y
0
(
−
j
e
(
j
θ
+
j
ω
n
t
1
−
ζ
2
)
+
j
e
(
−
j
θ
−
j
ω
n
t
1
−
ζ
2
)
)
2
1
−
ζ
2
=
e
−
ζ
ω
n
t
y
0
(
−
j
e
j
(
θ
+
ω
n
t
1
−
ζ
2
)
+
j
e
−
j
(
θ
+
ω
n
t
1
−
ζ
2
)
)
2
1
−
ζ
2
=
{\displaystyle y(t)={\frac {e^{j(\theta -{\dfrac {\pi }{2}})}e^{(-\zeta \omega _{n}+j\omega _{n}{\sqrt {1-\zeta ^{2}}})t}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}+{\frac {e^{j({\dfrac {\pi }{2}}-\theta )}e^{(-\zeta \omega _{n}-j\omega _{n}{\sqrt {1-\zeta ^{2}}})t}y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}={\dfrac {(e^{(j\theta -{\dfrac {j\pi }{2}}-\zeta \omega _{n}t+j\omega _{n}t{\sqrt {1-\zeta ^{2}}})}+e^{({\dfrac {j\pi }{2}}-j\theta -\zeta \omega _{n}t-j\omega _{n}t{\sqrt {1-\zeta ^{2}}})})y_{0}}{2{\sqrt {1-\zeta ^{2}}}}}={\dfrac {e^{-\zeta \omega _{n}t}y_{0}(e^{(j\theta -{\dfrac {j\pi }{2}}+j\omega _{n}t{\sqrt {1-\zeta ^{2}}})}+e^{({\dfrac {j\pi }{2}}-j\theta -j\omega _{n}t{\sqrt {1-\zeta ^{2}}})})}{2{\sqrt {1-\zeta ^{2}}}}}={\dfrac {e^{-\zeta \omega _{n}t}y_{0}(-je^{(j\theta +j\omega _{n}t{\sqrt {1-\zeta ^{2}}})}+je^{(-j\theta -j\omega _{n}t{\sqrt {1-\zeta ^{2}}})})}{2{\sqrt {1-\zeta ^{2}}}}}={\dfrac {e^{-\zeta \omega _{n}t}y_{0}(-je^{j(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}})}+je^{-j(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}})})}{2{\sqrt {1-\zeta ^{2}}}}}=}
e
−
ζ
ω
n
t
y
0
(
−
j
cos
(
θ
+
ω
n
t
1
−
ζ
2
)
+
sin
(
θ
+
ω
n
t
1
−
ζ
2
)
+
j
cos
(
−
(
θ
+
ω
n
t
1
−
ζ
2
)
)
−
sin
(
−
(
θ
+
ω
n
t
1
−
ζ
2
)
)
)
2
1
−
ζ
2
=
e
−
ζ
ω
n
t
y
0
(
−
j
cos
(
θ
+
ω
n
t
1
−
ζ
2
)
+
sin
(
θ
+
ω
n
t
1
−
ζ
2
)
+
j
cos
(
θ
+
ω
n
t
1
−
ζ
2
)
+
sin
(
θ
+
ω
n
t
1
−
ζ
2
)
)
2
1
−
ζ
2
{\displaystyle {\dfrac {e^{-\zeta \omega _{n}t}y_{0}(-j\cos(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}})+\sin(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}})+j\cos(-(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}}))-\sin(-(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}})))}{2{\sqrt {1-\zeta ^{2}}}}}={\dfrac {e^{-\zeta \omega _{n}t}y_{0}(-j\cos(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}})+\sin(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}})+j\cos(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}})+\sin(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}}))}{2{\sqrt {1-\zeta ^{2}}}}}}
2
e
−
ζ
ω
n
t
y
0
sin
(
θ
+
ω
n
t
1
−
ζ
2
)
)
2
1
−
ζ
2
=
e
−
ζ
ω
n
t
y
0
sin
(
θ
+
ω
n
t
1
−
ζ
2
)
)
1
−
ζ
2
⇒
{\displaystyle {\dfrac {2e^{-\zeta \omega _{n}t}y_{0}\sin(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}}))}{2{\sqrt {1-\zeta ^{2}}}}}={\dfrac {e^{-\zeta \omega _{n}t}y_{0}\sin(\theta +\omega _{n}t{\sqrt {1-\zeta ^{2}}}))}{\sqrt {1-\zeta ^{2}}}}\Rightarrow }
y
(
t
)
=
[
y
(
0
)
1
−
ζ
2
]
.
[
e
−
ζ
ω
n
t
sin
(
ω
n
1
−
ζ
2
t
+
θ
)
]
{\displaystyle \mathbf {y(t)={\Biggl [}{\dfrac {y(0)}{\sqrt {1-\zeta ^{2}}}}{\Biggl ]}.[e^{-\zeta \omega _{n}t}\sin(\omega _{n}{\sqrt {1-\zeta ^{2}}}t+\theta )]} }
(7)