Saltar para o conteúdo

Portal:Formação Básica/Matemática/Números Naturais

Fonte: Wikiversidade

Bem-Vindo À disciplina de Números Naturais
Curso de Matemática - Formação Básica

  1. Introdução aos Números Naturais

O conjunto dos números naturais é representado pela letra maiúscula N e estes números são construídos com os algarismos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, que também são conhecidos como algarismos indo-arábicos. No século VII, os árabes invadiram a Índia, difundindo o seu sistema numérico.

Embora o zero não seja um número natural no sentido que tenha sido proveniente de objetos de contagens naturais, iremos considerá-lo como um número natural uma vez que ele tem as mesmas propriedades algébricas que os números naturais. Na verdade, o zero foi criado pelos hindus na montagem do sistema posicional de numeração para suprir a deficiência de algo nulo. Para saber mais, clique nos links: Notas históricas sobre o zero ou Notação Posicional. Caso queira se aprofundar no assunto, veja o belíssimo livro: "História Universal dos Algarismos, Tomos I e II, Editora Nova Fronteira, 1998 e 1999", de Georges Ifrah.

Na sequência consideraremos que os naturais têm início com o número zero e escreveremos este conjunto como:

N = { 0, 1, 2, 3, 4, 5, 6, ...}

Representaremos o conjunto dos números naturais com a letra N. As reticências (três pontos) indicam que este conjunto não tem fim. N é um conjunto com infinitos números.

Excluindo o zero do conjunto dos números naturais, o conjunto será representado por:

N* = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...}


A construção dos Números Naturais Todo número natural dado tem um sucessor (número que vem depois do número dado), considerando também o zero.


Exemplos: Seja m um número natural.

(a) O sucessor de m é m+1.

(b) O sucessor de 0 é 1.

(c) O sucessor de 1 é 2.

(d) O sucessor de 19 é 20.

Se um número natural é sucessor de outro, então os dois números juntos são chamados números consecutivos.

Exemplos:

(a) 1 e 2 são números consecutivos. (b) 5 e 6 são números consecutivos. (c) 50 e 51 são números consecutivos.

Vários números formam uma coleção de números naturais consecutivos se o segundo é sucessor do primeiro, o terceiro é sucessor do segundo, o quarto é sucessor do terceiro e assim sucessivamente.


Exemplos:

(a) 1, 2, 3, 4, 5, 6 e 7 são consecutivos. (b) 5, 6 e 7 são consecutivos. (c) 50, 51, 52 e 53 são consecutivos.

Todo número natural dado n, exceto o zero, tem um antecessor (número que vem antes do número dado).

Exemplos: Se m é um número natural finito diferente de zero.

(a) O antecessor do número m é m-1. (b) O antecessor de 2 é 1. (c) O antecessor de 56 é 55. (d) O antecessor de 10 é 9.

O conjunto abaixo é conhecido como o conjunto dos números naturais pares. Embora uma seqüência real seja um outro objeto matemático denominado função, algumas vezes utilizaremos a denominação sequência dos números naturais pares para representar o conjunto dos números naturais pares:

P = { 0, 2, 4, 6, 8, 10, 12, ...}

O conjunto abaixo é conhecido como o conjunto dos números naturais ímpares, às vezes também chamado, a sequência dos números ímpares.

I = { 1, 3, 5, 7, 9, 11, 13, ...}